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Abstract—This review presents a number of mathematical expressions which the experimental scientist may
find useful to fit to time-dependent luminescence intensity (and concentration) data for both decay and rise sit-
uations. Some of these expressions have been drawn from literature sources and are presented here in a unified
form. In compiling these expressions, a number of gaps were found in the literature, and, in this review, new
expressions have been derived to fill some of these gaps. The final section of the review summarizes both the
existing and the new kinetic expressions and provides an explanation of how to use them. Some of the subtleties
and pitfalls of using kinetic data fitting to determine reaction mechanisms are also discussed.

1. INTRODUCTION

It is intended that this review will prove useful for
experimental scientistsin such areas as photochemistry,
photobiology, chemical kinetics, radiolytic studies,
etc., where it is common experimental procedure to
measure the time dependence either of the lumines-
cence intensity or of the concentration of products.
Such measurements may be made on achemical system
following the initiation of a continuous photolytic or
radiolytic excitation process, or, after the cessation of a
transient excitation process.

There are a number of mathematical expressions
available in the chemical literature that can be fitted to
time-dependent [uminescence intensity or concentra-
tion data. Each of these mathematical expressions cor-
responds to a particular type of reaction mechanism.
Unfortunately, the available expressions are widely
scattered in theliterature and there is no comprehensive
document available to summarize them all. Further-
more, there are a number of gapsin the existing litera-
ture which we attempt to fill by deriving some new
expressions.

2. CLASSICAL MODELS
2.1. First-Order Moddls

2.1.1. Simple First Order. Consider the simple
reaction scheme:

A *-B. @

The fall of the concentration of species A with
time will be described by the integrated first-order
equation (1)

[A] = [Aloexp(-kt), ey

L This article was submitted by the authorsin English.

where [A] is the concentration of species A at timet,
[A],istheinitia concentration of speciesA, and kisthe
first-order rate constant for the reaction.

The above reaction scheme can easily be extended
to deal with the case of alight-emitting reaction

A¥ —= A+ hv. ()

Here A* has been produced by some precursor process
which is no longer occurring. In this case, the intensity
will be given by

L = ¢[A]okexp(—kt), 2

where ¢ is the quantum efficiency of light emission,
and L isthe intensity of the emitted light. Quickenden
et al. [2-7] have previously used Eq. (2).

Now consider the following reaction scheme:

A+hv, 2 A% K0 A hy,. (110

In the above scheme, molecules of A* are being pro-
duced by the excitation of A with electromagnetic radi-
ation, while the excited species A* is decaying back to
its ground state and emitting electromagnetic radiation
of alonger wavelength. This is a classical first-order
scheme for the production of fluorescence. In this case,
the excitation rate (indicated by “fast” in Eq. (111)) is
much higher than the rate of emission, k.

When the exciting light isfirst turned on, there will
be arise in the luminescence intensity. This will reach
a plateau level and remain there until such time as the
exciting light is turned off. After this there will be a
decay in the intensity of luminescence. During therise,
the luminescence intensity will be given by [6]

L = ¢10,!(1-exp(-kt)), 3

where ¢, is the quantum efficiency for the emission
process, ¢, isthe quantum efficiency for the excitation
process, and | isthe intensity of the exciting light.
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The concentration of A* will reach a plateau, and
thiswill be given by [8]

[AY e = 417k “)

When the exciting light is turned off, the luminescence
intensity will decay according to

L = ¢ok[AQ paceXp(—kt) = ¢10,l exp(—kt), (5)

which is consistent with Eq. (2) if [A], in EQ. (2) is
made equal to [A]xea, and ¢ is made equal to §,.
Aswell asbeing used for unimolecular kinetics, the
first-order model can also be used in the case of bimo-
lecular kinetics when the concentration of one of the
two reacting species is constant or almost constant. In
this case, the kinetics are described as being pseudo-
first-order (see Section 2.2.2 for further details on this).

2.1.2. Double First-Order Models. A variation of
the simple first-order model is the double first-order
model. Quickenden et al. [6, 7] have termed this model
the biexponential model and present an example of
such a mechanism. For this model, an extension of
expression (3) leads to the following equation for the
rise of luminescenceintensity with timewhen the excit-
ing light isturned on [6, 7]:

L = a(1-exp(-kit)) + b(1-exp(-kyt)), (6)

where k, and k;, are the rate constants for the two pro-
cesses, and a and b are defined as follows:

a = 01,05l (7
and

b= 10! (3)

In this case, | isthe exciting light intensity, ¢,, and ¢,
are the quantum efficiencies for the excitation of the
two species, and ¢,, and ¢,,, are the quantum efficien-
ciesfor the two decay processes.

In this model, the decay of luminescence intensity
with time when the exciting light is turned off is given

by [6, 7]
L = aexp(—kat) + bexp(—kst), €))

where the symbols have all been previously defined.

Quickenden et al. [6, 7] have suggested that the sim-
plest phenomenological explanation for a bimolecular
modeling of the rise and fall of luminescence intensity
is that two excited species, A* and B*, are decaying
back to their ground states independently of one
another. Note that if A* and B* can return to their
ground states by a number of different mechanisms,
then k, will be the sum of the rate constants for al the
processes by which A* can return to its ground state,
and similarly for k,. This is explained further later in
this section.

Yguerabide and Burton [9] and, more recently,
Alvarez-Pez et al. [ 10] have shown that a biexponential
decay aso results when the two excited species can

interconvert in addition to decaying back to their
ground states. For clarity, the first situation (as dis-
cussed above), where the two decays are independent,
will be referred to hereafter as the uncoupled biexpo-
nential model, and the second situation, where the two
excited species may interconvert, will be termed the
coupled biexponential model. The latter case will now
be analyzed in detail.

Consider the following reaction scheme where
interconversion between species A and B can occur
when they are in either their ground states or their
excited states:

AD+ M=2- B0+ N

ol

A+M=——B+N.

Y guerabide and Burton [9] examined a particular
example of a system like the one above, where A is a
monomer and B is its dimer. Alvarez-Pez et al. [10]
examined a system also resembling the one above, but
where A and B are conjugate acid-base pairs. We will
outline the equations governing luminescence decay
and also derive an expression for the rise of lumines-
cence intensity with time.

In the above scheme, A* and B* may return to their
ground states by a number of possible routes—there
might be quenching (Q) by a quencher molecule, Q;
there might be internal conversion (IC) or intersystem
crossing (ISC); or there could be fluorescence (F). For
simplicity, if ky and kg represent the combined rate con-
stantsfor al of these processes, then [10]

Ka = Kea + Kica + Kisca + Koa[ Q]

Ks = Keg + Kicg * Kiscg + K[ Q] -

Although it is not shown in the above reaction scheme,
for generality we must also consider [ 10] the possibility
that interconversion of A (or A*) to B (or B*) might
occur directly without involving M or N, according to

av)

(10a)
(10b)

A* <2 B (Va)
‘AB
and
A<—B. (Vb)

It has been shown [9] that if the above system is
excited by a rectangular pulse of exciting light, which
lasts long enough for a steady state to be obtained, then
coupled differential equations of the following form
will result:

d_[g;[] = a,[B0 —a,[AQ, (11a)
dlstEl = o,[A0 —a,[B0, (11b)
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where

a; = Kag + Kag[N], (12a)

0, = Kgp + Kga[M] +Ka, (12b)
a3 = Kga + Kga[M], (12¢)
0y = Kag + Kag[N] +Kg. (12d)

Y guerabide and Burton [9] provided a method of solv-
ing these coupled differential equations, and Alvarez-
Pez et al. [10] gave their solution as

[BO = Bgsexp(yst) + Be.exp(y.t), (13a)

[AQ = Basexp(yst) + BaLexp(y.t), (13b)
where

YsiL = —(O(2+O(4)1J(<;4—a2)2—4a1a3. (14)

The [3; coefficients in the above solutions may be
solved by considering the initial values of the concen-
trations and their derivatives. This gives a system of
simultaneous linear equations with the [3; symbols as
unknowns. Their solution is [8-10]

(a,+y )[AQo—a,[B0o

Bas = Vi—Vs (15a)

B = (a2+VS)[AE]0—0(1[B[]01 (15b)
Ys—YL

Bos = (0(4"'YL)[BE]0—O‘3[A|:]0’ (15¢)
YL—VYs

B = (a,+ys)[BHo—a 3[A[]0 (15d)
Ys—YL

Note that the values for 3,5 and (or) Bgs Might be nega
tive, but positive concentrations will still result overall.

The observed emitted light intensity will be given by

L = ¢okea[AQ) +6 ,kes[BO, (16)

where ¢, is an instrumental factor to account for the
light collection efficiency and the bandpass. Hence

L = aexp(yst) + bexp(y.t), (17)
where

a = ¢,(KeaBas * KesBes) (18a)

b = ¢,(keaBaL * KesBsl)- (18b)

Note that a will be negative if both 3,5 and Bgg are
negative. If they are both positive, a will also be posi-
tive. If one is positive and one is negative, a may be
either positive or negative depending on the relative
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magnitudes of the terms in Eq. (18a). On the other
hand, b must always be positive.

In [9, 10], the authors derived only decay expres-
sions. We now present an expression for the rise of
luminescence intensity with time when the exciting
light isturned on.

Consider the above coupled biexponential system
(in Eg. (1V)), which is being excited by radiation of
intensity 1. The system will now be described by the
following coupled differential equations:

d[AH]

e a,[BO —a,[AQ + ¢yl (19a)
A8 - a0 -a B0 +4el,  (19b)

where | is the exciting light intensity, ¢,, is the quan-
tum efficiency for the excitation of A molecules, ¢,5 is
the quantum efficiency for the excitation of B mole-
cules, and the other symbols have been previously
defined.

The solution of the above equationsis[8]
[AQ = ciexp(yst) + coexp(y.t)

a;dpl + 0,94l (20a)

YsYo '

[BO = coexp(yst) + caexp(y.t)

+ Azdial +0,05! (20b)

YsYL ’

where from the initial conditions we find [8]

G = Vs(Vs )((Vs a)da +a,;0,5), (2la)
G = m((VL+G4)¢1A+G1¢1B)1 (21b)
Cs = m((ys*‘ a)d.a +azdig), (2lc)
o= oy (T G+ o). (214)

By matching up the rise solutions (Egs. (20a) and
(20b)) with the fall solutions (Egs. (13a) and (13b)) at
the point at which the exciting radiation is turned off,
we observe that Bas = —Cy, BaL = —C5, Bgs = —C;, and
BsL = —C4. Hence, ¢, and ¢, must be negative while ¢,
and c; may be either negative or positive. Finally, the
luminescence intensity for the rise case of a coupled
biexponential model will be given by

L = ¢okea[AQ +6 ke[BH. (22)
By substituting in the expressions for [A*] and [B*]
(Egs. (20a) and (20b) given above) and rearranging, we
have
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L = &o{ (—KeaCy—KesCs) (1 —exp(yst))
+ (—KeaCo —KegCy) (1 — exp(y. 1)) }
= a(1-exp(yst)) + b(1—-exp(y.1)),
where the symbols have all been previously defined.

(23)

2.2. Second-Order Models

2.2.1. Equal Initial Concentrations. Consider the
elementary reaction

A+AX*-C. (VD)

This type of reaction is said to be bimolecular
because two molecules of species A are reacting. It is
well known [1] that, for this type of reaction, the con-
centration of speciesA decreases according to

[Alo
1+K[A]t’
where k is the second-order rate constant for the reac-

tion and the other symbols have all been previously
defined.

Now consider the possible second-order reaction
scheme for afluorescent reaction:

A+ A Ko CF B Oy hy. (VID)

If the second step is fast compared with the first,
then the luminescence intensity will decay according to

[A] = (24)

_ d[cE] d[A] Ok[A]S
L = .5
AT (L K[A]ot)? 2
Quickenden et al. [2—4, 6] give the above expression as
KIAl
= Ao 26
(1+K[A]ot)® 20

which is the same as the previous one (Eg. (25)) if itis
assumed that the quantum efficiency is unity (see Sec-
tions 5.1 and 6). It should be noted that, when Eqg. (25)
is presented in [6], thet has been inadvertently omitted.

Let usnow consider the situation where speciesA is
being produced as well as consumed:

X+hv, B A4 A K 0B Cyhy,. (VI
For the above system, it has been shown [11] that
AL = g1 -kar?, )

where ¢, isthe quantum efficiency for the production of
A molecules. It should be noted that Calvert and Pitts
[11] designate A by R,.

From Eq. (27), with the assumption that [A], =0, it
followsthat [11] therisein the concentration of species
A when the exciting radiation is turned on will be
described by

[A] = (@,1/k)Ptanh(t(¢,1k)"?).

The assumption that [A], = O isreasonable becauseif A
was present initially, then there would already be lumi-
nescence from the C* that would form spontaneously.

Although Calvert and Pitts consider the rise of the
concentration of speciesA, they do not explicitly derive
an expression for the rise of luminescence intensity
with time when the exciting radiation isfirst turned on.
We will now do this.

Therise of theluminescence intensity with time will
be given by

(28)

_ 4 dcy
L= ¢, T (29)
where ¢, isthe quantum efficiency for the production of
luminescence from C*. Since the rate of production of
C* isequal to the rate of consumption of A, it follows
that [8]

L = ¢,k[A]? = atanh®(Bt),

where a = ¢,¢,1 and B = (¢,1k)'"2.

2.2.2. Unequal Initial Concentrations. Consider
the following bimolecular elementary process where
theinitial concentrations of A and B are not equal:

(30)

A+B X~ C. (IX)

The above case is considered generaly by Benson
[1], and he has some useful discussion on this situation.
However, he does not present an explicit expression for
the concentration of species C at time t, which we will
now do. The above system can be described by the dif-
ferential equation

_d[A] _d[q] _
dt dt

It may be noted that if one concentration is much
greater than the other, for example, if [B] > [A], wecan

= K[A][B]. 31)

write k' = k|B] and then we have
diA] _ _
o K[A], (32)

which may be treated as a first-order situation. If this
happens, then we have the well-known [1] case of
pseudo first-order kinetics.

Later, in Section 3.2.2, we will give the solution to
Eq. (31) for the nonclassical case where k = kt" and
give the general solution as Eq. (54). The present situa-
tion represents the classical case where h = 0. Setting
h=0inEq. (54) leadsto

9 = Blogi [Alo=[Bl, )
51 P(([Alo=[B]o)kD) -1
KINETICS AND CATALYSIS Vol. 44 No.1 2003
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Now consider the luminescence-producing reaction

A+B X%~ C + hv, (X)

where, as is usual, the second step is much faster than
thefirst. Aswasthe casein Section 2.2.1 with equal ini-
tial concentrations, the luminescence intensity decays
according to

C % fast

L= ¢4

As has been shown by Quickenden et al. [24, 6, 7],
this gives

(34)

¢[A] R(1-R)we"
(R—€")’

where R = [B]y/[Aly, W = k[A]y(1 — R), and the other
symbols have their usual meanings. The quantum effi-
ciency is again defined as unity as in Section 2.2.1.
Note that Quickenden et al. [2, 4, 6] have sometimes
incorrectly defined R as [A]y/[B],. Also, in [6, 7] the
authors have mistakenly added an extra factor of k[A],
in the numerator. However, because of the arbitrary
nature of ¢ (see Section 5.1), this will not cause major
problems.

We have discussed above the decay of luminescence
intensity with time for a bimolecular system with ini-
tially unequal concentrations, which has been consid-
ered by previous researchers. We will now consider
how the luminescence intensity from such a system
rises with time when the system is first excited with
radiation. This case has not been dealt with previously
and is rather more complicated than the decay situation
for the following reason. When two species are present
ininitially unegual concentrations and proceed to react
according to a bimolecular reaction mechanism, it does
not matter how they were produced initially or how
their concentrations became unequal. However, when
we consider the rise situation, we must take into
account the process(es) that produced the two species
and aso how the concentrations became unequal. We
will consider two possible mechanisms for producing
unequal concentrations.

Firstly, let us consider the following system:

X+hy, 2% A+B X Cx Cyhy, (X

where A and B are produced and consumed on aone to
one basis, but before the exciting radiation (hv,) is
turned on, there are already B molecules, but no A mol-
ecules, present in the system. Writing

D = [B] -[A] = [Blo—[Alq (36)

and noting that the system is described by the differen-
tial equation

: (35)

AL = g1 kAl (37)
we have
KINETICS AND CATALYSIS Vol. 44 No.1 2003

dAL = g1 -K[AT(D +[AD). 38)
This may be solved [8] to give
[A] = Ttanh[ktp + tanh Eb [—2), (39)
from which it follows[8]:
— [B]plateau — D+[A]plateau — pll2+ D
R = = = . (40
[A] plateau [A] plateau pﬂz—D ( )

We can now use these equations to find an expres-
sion for the rise of the luminescence intensity with
time. Asin the case of equal initial concentrations, the
rise of the intensity of the luminescence with time will
be given by

L= 9,48, @1)

where ¢, isthe quantum efficiency for the production of
luminescence from C*. Since the rate of production of
C* isegual to the rate of consumption of A,

L = ¢K[A][B] = ¢.k[A]([A] +D).
Combining thiswith Eq. (38) gives[8]

Zﬁktp +tanh_lDD3% 43)

which reducesto Eq. (30) if [A] =[B] (see Section 2.2.1).
The above expression can be simplified to [8]

L = ¢2Bb1| + D4|%

[ D/p" + tanh(ktp**/2) 7 9,0’
Dl+(D/p”2)tanh(ktp”2/2)D 4
Asusud, we may let ¢, be unity (see Sections 5.1 and 6).

We will now consider a second possible mechanism
for producing A and B in unegual concentrations. Let
us take a mechanism represented by the following

steps:

(42)

L= ¢2D¢1

(44)

X+ hv, B A, (XIIa)
X + hvl fat, B, (XIIb)
A+B X Cx I C 4 hy,, (XIIc)

where the quantum efficiencies for processes (X11a)
and (X11b) are not equal and are given by ¢,, and ¢,g,
respectively. This system will be described by the dif-
ferential equations

d[A] _

2 = 91l ~KIAI[B]

(45a)
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and

A8 = g1 -KiAIBI.
Although the above equations have no known analyti-
cal solution, it may be shown that [8], at very short
times, [A] = [B] and the rise will be similar to that for
the second-order model with initially equal concentra-
tions presented in Section 2.2.1. Also [8] at very long
times, the difference between the two concentrations
will become very large, and the subsequent decay will
resemble that for a pseudo first-order situation.

(45b)

3. FRACTAL MODELS OF KINETICS

There has been much recent interest in the area of
fractal kinetics sincethe early publication by Ovchinni-
kov and Zeldovichin 1978 [12]. Fractal kinetics (some-
times caled “fractal-like” kinetics) may need to be
used in situations where reactants are spatially con-
strained on amicroscopic scale by walls, forcefields, or
phase boundaries.

In areaction involving fractal kinetics, the rate coef-
ficient in thelong time limit isafunction of timeand is
given [13-16] by

k(t) = kot™, (46)

wherek(t) istherate coefficient at timet, k, isaconstant
and corresponds to the rate constant for the reaction in
anonfractal regime, and hisrelated [16, 17] to the spec-

tral or fracton dimension, d, of the system by

h = 1—d/4. (47)

For a discussion on the dimensions involved with frac-
tals, the work of Rammal and Toulhouse [ 18] should be
referred to.

3.1. Second-Order Fractal Kinetics
with Equal Initial Concentrations

Consider the reaction below occurring in a fracta
medium:

A+ AT o s, oy hy, (XTIT)

This situation was considered in [12-14, 19-22],
and an expression for the decay of concentration with
time has been reported [13, 14, 20-22]. Dissado [19]
also derived an expression for the decay of lumines-
cence intensity with time, but it is incorrect due to an
error in the final differentiation step. The above system
will be described by the differential equation

dlA] _
dt

which may be solved [8, 13, 14, 20] to give

kot "[A]%, 48)

A
[A] = _____[__]_0___1___h_ (49)
L+ Kol Aot
1-h
The luminescence intensity will be given by
-h 2
L= dAL = gietpag? = A )

5, KAl ot
1-h O

As in the classical second-order expressions, ¢, the
guantum efficiency, can be made equal to unity (see
Sections 5.1 and 6).

3.2. Second-Order Fractal Kineticswith Unequal
Initial Concentrations

3.2.1. Introduction. In this section we will focuson
reactions of thetypeA + B —= C occurring in afractal
medium. Species C may be inert and not react any fur-
ther (A + B — 0), or it may undergo a subsequent
“fast” light-emitting step, viz.,

k() = kgt ™" O fast

A+B C+hv. (X1V)

By fast, it is meant that the second step in the above
scheme occurs on a much shorter time scae than the
first.

Thecurrent literature on fractal kinetics[12-14, 19-22]
normally examines the special case where A and B are
initially in equal concentrations or the specia case
where the concentration of one speciesis much greater
than the other. The latter is often called pseudo-unimo-
lecular or pseudo-first-order. These situations have
been discussed in the above sections of this review.

Kang and Redner [17] have considered the case of
fractal kinetics with initially unequal concentrations.
They have found that, in the short time limit, the con-
centration decays as

[A] = ct™, (51)

where [A] isthe concentration of speciesA, tistime, d

is the spatial dimension of the system, and c is a con-

stant. By short time limit, it is meant that t < t;, where

t; is the characteristic time of the system. This is the

timetaken for aparticleto diffuse acrossaregion of lin-

ear dimension &, where & is given by [17]

-2/d

& = ((NA[Bl) = (NA[A])™) ™, (52)

where [B], and [A], are the initial concentrations of B
and A, respectively, and N, is the Avogadro number.

Kang and Redner [17] derived an expression for the
initially unequal concentration case, but it is not fully
evaluated—there are several constants left out. In addi-
tion, they did not consider the case, where species C
subsequently produces luminescence. The expressions
derived in this work are in two forms, viz., an explicit
expression which includes all constants and has con-

KINETICS AND CATALYSIS Vol. 44 No.1 2003
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centration as a function of time and an expression for
luminescence intensity as a function of time when the
reaction being studied is chemiluminescent.

Schnorer et al. [23, 24] have also derived concentra-
tion versus time expressions for the case of initially
unequal concentrations. However, unlike the present
derivation, which is valid for the more common three-
dimensional space situation, these derivations are only
for one-dimensional space. They also assumethat there
arelocalized regions where there are only molecules of
species A and other regions where there are only mole-
cules of species B. In order to achieve these localized
regions, a sufficiently high reaction rate isrequired [24].

3.2.2. Derivation. Consider the following second-
order reaction scheme:

A+B X, C. (XV)

For second-order kinetics [13-15, 19] of the fractal
type considered above,

diC] _ d[A]

_ _ -h
gt = qi - Kot TAI[BI. (53)
This may be solved to give [§]
[Alo—[Bl,
[C] = [Blo- —
" [Aly, {IAL=[BI)t kg, (54)
B, PO 1-h O

If we now extend Eqg. (XV) to include the luminescent
reaction schemein Eq. (XIV), we can show that [8]

1-h
ORIATo(1- R)thexpg“l”_ -
L = — , (55)
E? epHy Dl hDD
wherew = k,[A](1 — R) and R=[B]y/[A]y, and ¢ isthe

guantum efficiency.

In the special case where his equal to zero, the situ-
ation of a nonfractal bimolecular luminescent reaction
between A and B occurs and Eg. (55) reduces to
Eqg. (35).

In the case of R> 1 or R < 1, the situation of
pseudo-first-order fractal kinetics occurs, and this case
is discussed in the next section.

3.3. Fractal Kinetics As Treated by Plonka

3.3.1. Luminescence Decay Kinetics. Plonka has
derived a function for fitting time-dependent decay
kinetics and has shown that it fits a large amount of
experimental data quite satisfactorily. The derivation
and subsequent fitting of data have appeared in alarge
number of papers by Plonka and his coworkers, of
which some representative examples are [20-22]. This
expression has been used by other researchers, for
example, Quickenden et al. [5—7]. However, although it
has been shown that this function frequently fits exper-
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imental data quite well, until now it has been unclear
what mechanistic information this provides. This sec-
tion attempts to clarify this situation.

In order to derive hisexpression, Plonkabeginswith
the time-dependent rate coefficient
k(t) = kot ™% (56)

If welet a =1 - h, then this equation is equivaent to
the time-dependent rate coefficient for fractal kinetics

mentioned in Section 3. Plonka then goes on to show
that the luminescence intensity will decay according to

oa-1
L=y 5 ep EEE, (57)
where T is called the “ effective lifetime” and yisapro-
portionality constant.

Plonka and coauthors have interpreted the above
expression in two ways. Firstly, they consider that the
luminescence results from a number of simultaneous
first-order processes. This would correspond to a gen-
eralization of the uncoupled biexponential model (see
Section 2.1.2). The second interpretation made by
Plonka and his coworkers is that the luminescence
results from a second-order fractal process with ini-
tially unegual concentrations and with one of the con-
centrations being much greater than the other one. This
is similar to the classical case of pseudo-first-order
kinetics discussed earlier in Section 2.2.2. In this dis-
cussion, we show that the first interpretation is much
more likely to be correct. Additionally, Plonka [21]
attempts to explain the case of fractal kinetics with
equal initial concentrations as a number of simulta-
neous second-order processes and, by similar reason-
ing, we will show that this interpretation is unlikely to
be valid.

We will now consider Plonka's derivation and show
how it applies to pseudo-first-order fractal kinetics.
Consider the following reaction:

A+B M o B, C4h, (XVI)
If this reaction occurs in a fractal medium, then, at
long times, we can let k(t) = kg t™. (Here we use a dou-

ble primeon k; toindicatethat it isasecond-order rate

constant.) The above system will be described by the
following differential equation:

AL = sGeanel. 58)
Since[B] > [A], we can write
AL = erral, (59)

where k, = ky [B]. On integration this gives[8, 21, 22]
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kotl h
—h D

This will apply whether or not the reaction is light-
emitting.

The dependence of luminescence intensity with
time for a chemiluminescent reaction, which follows
the Plonkakinetics, isthen given as [§]

[A] = [AloexpH= (60)

kot D

L = ¢[A]okot” eXpD (61)

—hr
Plonka defines the “ effective lifetime” 1 as
: Dl_h:llla
T = D_ko o - (62)
Using a = 1 — h, we can rearrange Eq. (61) in the form
oa-1
L = yaT_lE}ﬁ exp% E}EE (63)

whichisidentical to Eq. (57) (y will equal ¢[A]y).

The above treatment shows how the Plonkaequation
applies to a pseudo-first-order reaction occurring in a
fractal medium. We will now examine Plonka's*“simul-
taneousreaction” interpretations of kineticsin the cases
of pseudo-first-order fractal and second-order fractal
with equal initial concentrations.

Plonka writes [21]
o-1
L = yar‘lgﬁ expE—EEEUE
o (64a)

= IeXp(—t/T)f(T)dT
0

for pseudo-first-order kinetics and

_ [Alo _ [Alo
1-h

for second-order fractal kinetics with initially equal
concentrations. Plonka then points out that f(t) can be
evaluated using an inverse Laplace transformin thefirst
case and an inverse Méellin transform in the second
case. Although there is no problem mathematically
with these ideas, there is no phenomenological reason
why these things must occur. In fact it is possible to
write the first-order equation as a sum of second-order
equations and the second-order equation as a sum of
first-order equations. Furthermore, this logic can be
applied to any function so that it may be written as the
sum of any other arbitrary functions weighted accord-
ing to some weighting factors given by f(T). By using
the appropriate transform, we can always evaluate f(T),
even if it cannot be done analytically. Thisis what is
done, for example, in signa analysis when a sguare

wave is written as the sum of a number of sine waves
using a Fourier transform. Because this can be done
mathematically, it does not mean that the square wave
actually resulted from the superpositioning of anumber
of sine waves.

3.3.2. Kineticsof Risein Luminescence I ntensity.
Despite publishing many papers, Plonka has derived
only an expression for the decay of luminescenceinten-
sity with time. In this section, we will develop amethod
to treat data from the rise of luminescence intensity
with time. As there is no analytical solution here, we
must resort to a numerical treatment.

Consider the reaction scheme

X +hv, 2 A+ B X cx B, C 4 hy,, (XVID)
where k() has its usua form. This system will be
described by the differential equation

d A .
AL = g1 -kt 1AL (65)
where ¢, is the quantum efficiency for the excitation
step in Eqg. (XVII).
Equation (65) may be solved to give [8]
dL 1

_’]_+L

kot' "

¢, is the quantum efficiency for the light-emitting step
above, andyisequal toy=¢,,l. Equation (66) can be
used to fit to an observed set of rise data. All that is
required is a numerical differentiation of the lumines-

(66)

cence intensity data, L, to obtain %IE

4. TUNNELING MECHANISM

Tachiya and Mozumder [25] have derived a kinetic
expression for the decay of luminescence intensity with
time when it is produced as a result of geminate-ion
recombination occurring by a tunneling mechanism.
They give [25] L as proportional to t™, where mis a
constant.

5. PROBLEMS, PITFALLS, AND SUBTLETIES
OF FITTING KINETIC DATA

5.1. The Implications of Assuming a Value
of Unity for the Quantum Efficiency

When fitting second-order expressions to lumines-
cence intensity decay data, Quickenden and coauthors
have often assumed that the quantum efficiency isunity.
Section 6 discusses why it is necessary to do this. Of
course, experimentally, it is very unlikely that this is
ever the case. Mathematically, however, we can show
that it is still acceptableto do this provided we note that

KINETICS AND CATALYSIS Vol. 44 No.1 2003
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the parameters obtained from the fit will not be absolute
and will have the guantum efficiency contained or “hid-
den” in them. This means that all concentrations found
from thefitting of datato kinetic expressions need to be
adjusted by dividing them by the quantum efficiency to
obtain the “true” or absolute concentration. Further-
more, all second-order rate constants need to be
adjusted by multiplying them by the quantum effi-
ciency in order to obtain the “true” or absolute second-
order rate constant. This can be shown to be true for
both the rise and fall expressions for second-order
kinetics, whether or not the concentrations are initially
equal or unequal. For second-order fractal kinetics, k,
needs to be multiplied by the quantum efficiency in
order to obtain its “true” or absolute value.

As an example, we will now show how the above
adjustments apply to the second-order decay with ini-
tially equal concentrations. The other situations can be
examined in asimilar way.

Consider the equation

Ok[A]S

T (1+ KA ©7

wherek and [A], are“true” or absolute. Now let us sup-
pose that

k = K (68a)

and

([ATo)si
.

where the “fit” subscript denotes fitted values for k and
[A],. If the quantum efficiency is assumed to be unity,
the following equation would be fitted to the experi-
mental luminescence intensity decay data:

[Alo = (68b)

_ _ kallAli
(1+ K ([Alo)t)

By substituting the above expressions for the “fit”
parameters, we obtain

(69)

k 2
L= 5([A]o¢) d)k[A]é

B > 2!
%Hq—i:[A]od)% (1+Kk[A]ot)

which is the same as the original expression (Eg. (67))
with an arbitrary quantum efficiency ¢. This provesthat
the adjustments to the concentration and rate constant
are correct.

70)
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5.2. The Apparent Mathematical Equivalence
of the Biexponential and Second-Order
Unequal Decays

A complication that may arise when fitting expres-
sions to observed luminescence intensity decay datais
that more than one function may appear to fit ade-
quately. Thisisaparticular problem when trying to dis-
tinguish abiexponential fit from a second-order fit with
unequal initial concentrations. This problem arises
because, under certain limiting conditions, the two
equations used for these fits are mathematically equiv-
alent. Thisisdiscussed elsawhere [8].

5.3. Normalization

When examining luminescence intensity decay
curves, it is quite common to collect several curves and
to average them in order to improve the signal-to-noise
ratio. This does not present a problem if the curves are
taken under identical conditions. However, significant
random error is often present, and thismay result in dif-
ferent starting intensities for the curves. In order to
overcome this problem, experimenters often normalize
their decay curves to have the same starting intensity
prior to averaging them. However, this is not always
mathematically justifiable. For first-order fits normal-
ization does not present a problem, but it may not be
valid for second-order fits. Here we will show why this
isthe case for a second-order equal decay.

First, let us consider the effect of normalization on a
simple exponential function. Let L, and Lg betwo first-
order luminescence decay curves, where

La = 0a[Alq akexp(—kt),
Le = ¢g[A]o gkexp(—kt).
The normalized averaged function will be

L = 1iPalAloakexp(Kt)  9s[Aloskexp(—kt)y
20 9A[A]q ak ¢s[Alosk U

= exp(—kt), (72)

(71a)
(71b)

wherethe starting intensity for each curve hasbeen nor-
malized to be unity. Itis clear that the form of the func-
tion is still exponential, and the rate constant k is not
affected.

Now consider two second-order equal (initial con-
centration) decay curves

2
— ¢Ak[A]O,A 5 (733)
(1+Kk[A]q al)
and
12
DoKIAS 73b)

® T (LKAl el)
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Summary of practical expressions to fit to time-dependent luminescence intensity data

Model %Sfi%n Decay expression Rise expression (see note 6) n (ig(es)
18-Oder 211 | L =a;exp(—kt) L = a;(1 — exp(—kt)) 4
Double 18-Oder 2.1.2 | L = aexp(—k,t) + bexp(—kyt) L = a(1 —exp(—kyt)) + b(1 — exp(—kyt)) -
2
d_ k[A
2 ok 221 [L= Ao L = atanh?(Rt) 7
([Alo=[Blo (1+ KAl
t
o Odler [A],R(1-Rwe" pk _ 20ktp*? =y Dz% 1,2,3
122 L: I_ = | _—$Ch +tanh J = | )y &y
2 0 /
([Alo# [Blo) (Roe™ 2 XN B vy 7
kot TALL
Fractal 2"-Oder 31 |L° 0 f — _ -
([Alo=[Blo) ' %1 L KolAlot
1-h U
A DNtl—hD
R[A](1-R)wt  exp=—r-
Fractal 2"%-Oder 32 |L= [Alo(1-R) PO1—h0 L
. 2 - 3y
([Alo# [Blo) DNtl_hDD
R~ PR
dL_1_
_ dtp .h
Fractal Pseudo 1%-Oder gt Opgd Kot
(Plonka) 33 | L =vyor o0 eXpE_EED E L = h -
1+ 1-h
Tunneling 4 |L=pt™ - 5

Notes: 1. Set w = k|A]o(1 — R) when fitting the equation.

4]
2.Setp= TO + D2 when fitting the equation.

3. 1g=¢4l, i.e,, the quantum efficiency must be assumed to be unity (see earlier in Section 6).
4. a1 = p[A]gk in therise expression and a; = ¢1¢-l in the decay expression. These two definitions are consistent as shown at the
end of Section 2.2.1. Again these arise because the quantum efficiencies must be assumed to be unity.

5. Pisaconstant of proportionality.

6. If initial dataistruncated, then al rise functions must have an arbitrary constant added to them.
7. For second-order fits, the rate constants and concentrations are not “true” or absolute. It is necessary to divide concentrations
by ¢ and to multiply rate constants by ¢ in order to get true values. See Section 5.1 for more details.

If we attempt to normalize both of these curvesto have
a starting intensity of unity and then average them,
we get
_10  ¢ak[Aloa
A~ ED 2 2
[ AK[AT5 (1 +K[A]g at)
¢sk[Aloe 0
$ak[Alg5(L+K[A]o 5t)D)

- 10 1 1 O
2H1+ K[Algat)? (1 +K[A]get)™

. (74)

whichisno longer asecond-order equal function unless
the initial concentrations [A], o and [A], g happen to
be equal. This demonstrates that we cannot always nor-
malize and average two second-order decay curves.

5.4. Effect of Truncating Initial Data

Sometimesit is hecessary to truncate the initial data
in a decay or rise curve. A common reason for doing
this might be that in an experiment thereis afinite time
taken for a shutter to open or close, which affects the
initial portion of the decay or rise curve. In other cases,
it is possible that there is atransient short-lived rise or
decay component superimposed on a longer lived one

KINETICS AND CATALYSIS Vol. 44 No.1 2003
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and it is desired that this short-lived be removed com-
ponent. Thereisno problem in removing theinitial por-
tion of adecay curve, becauseit isknown that the curve
must end on zero, and we can extrapolate the fitted
function back to zero time. It should be noted, however,
that this extrapolation may not match the experimen-
tally measured starting intensity, particularly, if thereis
a superimposed short-lived decay.

The situation for a rising curve of luminescence
intensity isalittle more complicated. It isknown that it
will start at zero experimentally, but this does not take
into account any initial short-lived rise from the shutter
or from another superimposed luminescence band.
Also, thefina intensity will be uncertain, particularly if
there is a short-lived rise at the start of the curve. As a
result, an arbitrary constant needs to be added to any
rise function to account for these uncertainties.

6. FITTING PROCEDURES

When an experimental set of time-dependent lumi-
nescence intensity dataisobtained, it istested by thefit-
ting program against the appropriate equation from the
table. Thefitting program will also require starting val-
ues for each of the parameters in the equation that is
being tested.

It is usualy necessary to assume that the quantum
efficiency is unity (see Section 5.1) for the following
reasons. As an example, consider Eg. (25) for the decay
of luminescenceintensity in a second-order equal reac-
tion mechanism. There are two possibl e fitted constants

here, viz., 9k[A]Z = s, and K[A], = S,. We now have

only two expressions from which to derive three vari-
ables, and this is impossible to do. Accordingly, we
reduce the number of variablesto two by assuming ¢ is
unity.

The program will report fitted parameters and the
sum of the squared residuals (SSR). The equation of
best fit will be that having the lowest SSR value as well
astheleast correlated residuals.

ACKNOWLEDGMENTS

Thiswork was supported by an Australian Research
Council Small Grant. B.J.S. gratefully acknowledges
an Australian Postgraduate Award during the course of
thiswork.

KINETICS AND CATALYSIS Vol. 44 No.1 2003

10.

11

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

25.

REFERENCES
Benson, SW., The Foundations of Chemical Kinetics,
New York: McGraw-Hill, 1960.
Trotman, S.M., Quickenden, T.l., and Sangster, D.F,
J. Chem. Phys., 1986, vol. 85, p. 2555.
Quickenden, T.I., Litjens, R.A.J., Bakker, M.G,, et al.,
Radiat. Res., 1988, vol. 115, p. 403.
Vernon, C.F., Matich, A.J., Quickenden, T.l., et al.,
J. Phys. Chem., 1991, vol. 95, p. 7313.
Quickenden, T.l., Matich, A.J., Bakker, M.G,, €t al.,
J. Chem. Phys., 1991, vol. 95, p. 8843.
Quickenden, T.I., Green, T.A., and Lennon, D., J. Phys.
Chem., 1996, val. 100, p. 16801.
Quickenden, T.l., Hanlon, A.R., and Freeman, C.G,,
J. Phys. Chem. A, 1997, val. 101, p. 4511.
Supplementary section of this paper.
Y guerabide, J. and Burton, M., J. Chem. Phys., 1962,
vol. 37, p. 1757.
Alvarez-Pez, JM., Bdlesteros, L., Talavera, E., et al.,
J. Phys. Chem. A, 2001, val. 105, p. 6320.
Calvert, J.C. and PFitts, J.N., Jr., Photochemistry, New
York: Wiley, 1966, p. 651.
Ovchinnikov, A.A. and Zeldovich, Y.B., Chem. Phys.,
1978, vol. 28, p. 215.
Klymko, PW. and Kopelman, R., J. Phys. Chem., 1983,
vol. 87, p. 4565.
Anacker, L.W. and Kopelman, R., J. Chem. Phys., 1984,
vol. 81, p. 6402.
Prasad, J. and Kopelman, R., J. Phys. Chem., 1987,
vol. 91, p. 265.
Dewey, T.G,, in Fractal Rev. Nat. Appl. Sci. Proc. IFIP
Work. Conf., Novak, M.M., Ed., London: Chapman and
Hall, 1995, 3rd ed., p. 214.
Kang, K. and Redner, S., Phys. Rev. Lett., 1984, vol. 52,
p. 955.
Rammal, R. and Toulouse, G., J. Phys—Lett. Res., 1983,
vol. 44, p. L13.
Dissado, L.A., Chem. Phys. Lett., 1986, vol. 124, p. 206.
Plonka, A., Annu. Rep. Prog. Chem., Sect. C, 1988,
vol. 85, p. 47.
Plonka, A., in Lecture Notesin Chemistry, Berthier et al .,
Eds., Berlin: Springer, 1986, vol. 40.
Plonka, A., Annu. Rep. Prog. Chem., Sect. C, 1998,
vol. 94, p. 89.
Schnérer, H., Sokolov, I.M., and Blumen, A., Phys.
Rev. A, 1990, val. 42, p. 7075.
Sokolov, I.M., Schnérer, H., and Blumen, A., Phys.
Rev. A, 1991, vol. 44, p. 2388.
Tachiya, M. and Mozumder, A., Chem. Phys. Lett., 1975,
vol. 34, p. 77.



